
/
/

Large Scale
Optimization
State of the Art

-/,_ - c;/--- c2/_

(ZJI / "-

Edited by

W. W. Hager
D. W. Hearn

and

P. M. Pardalos

Center for Applied Optimization,

Untverstt)' of Florida. GainesviUe, U.S.A.

KLUWER ACADEMIC PUBLISHERS

DORDRECHT / BOSTON / LONDON



r av.d J. Yackel

0
+
r_
>(

dx

i
11

A Numerical Comparison of Barrier and
Modified Barrier Methods For Large-Scale
Bound-Constrained Optimization"

Stephen G. Nash, R. Polyak, and Ariela Sofer

George 31ason University, Fawfaz, VA :?P030 USA

Abstract

When a classical barrier method is applied to the solution of a nonlinear pro-

gramming problem with inequality constraints, the Hessian matrix of the bar-
rier function becomes increasingly ill-conditioned as the solution is approached.

As a result, it may be desirable to consider alternative numerical algorithms.

We compare the performance of two methods motivated by barrier functions.
The first is a stabilized form of the classical barrier method, where a numer-

ically stable approximation to the Newton direction is used when the barrier

parameter is small. The second is a modified barrier method where a barrier

function is applied to a shifted form of the problem, and the resulting barrier

terms are scaled by estimates of the optimal Lagrange multipliers. The con-

dition number of the Hessian matrix of the resulting modified barrier function

remains bounded as the solution to the constrained optimization problem is ap-

proached. Both of these techniques can be used in the context of a truncated-

Newton method, and hence can be applied to large problems, as well as on
parallel computers. In this paper, both techniques are applied to problems

with bound constraints and we compare their practical behavior.

Keywords: nonlinear programming, barrier method, modified barrier method,

Newton's method, truncated-Newton method, large-scale optimization.
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1 Introduction

We will examine the solution of nonlinear programming problems of the form

minimize f(z) (1)
subject to ci(,)>0, i= 1,..,,m.

Here a: = (za ..... z,) r and the functions f a.nd {ci } will be assumed to be twice

continuously differentiable. We have in mind cases where n is large.

The methods we will consider for solving (1) will be based on classical barrier

functions. The constrained problem is converted to a sequence of unconstrained

problems. If the logarithmic barrier function is used. then the unconstrained problems
have the form

i--I

involving a "barrierparameter" # > O. Ifz'(y) denotes a minimizer of 3(z, _) then,

under appropriate conditions,itcan be shown that (as/_ -, O) any limitpoint z° of

the sequence { z°(#) } is a solution of (1) (see Fiacco and McCormick[5]). In addition,

the associated Lagrange multiplier estimates converge to the Lagrange multipliers at

It is well known that the Hessian matrix of the barrier function becomes increas-

ingly ill-conditioned as _ ---* 0 and a solution to (I) is approached. (This will be

discussed in more detail in Section 3.) More specifically, if k constraints are binding
at z ° and0< k<nthen

lira

Thu_ the classical barrier method "breaks down" as the method converges to the

solution of the original constrained problem.

We will examine two approaches that avoid this _structural" ill-conditioning (i.e.,

the ill-conditioning associated with the method, as distinct from the conditioning of

the underlying optimization problem). Both approaches solve a sequence of uncon-

strained optimization problems involving a (possibly modified) barrier function. The

first uses a numerically stable approximation to the Newton direction for the classical

barrier function (Nash and Sorer [14]). The second uses Polyak's modified barrier

method [17], which incorporates an explicit representation of the Lagrange multipli-

ers with an extension of the feasible region. Combined, these features can alleviate

the problem of ill-conditioning, and improve the overall rate of convergence.

In this paper, each of these unconstrained problems will be solved using a trunca-

ted-Newton method. In this method, the Newton equations for a search direction are

solved approximately using the conjugate-gradlent method. Why choose a truncated-

Newton method? It is a Newton-type method, that requires only first derivatives

(although second derivatives may be utilized if desired); it has low storage costs;
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it can be adapted to solve nonconvex problems; and it vectorizes well. Thus the

method reduces the costs of Newton's method while maintaining rapid convergence,

and is therefore suitable for large-scale problems. In practice the method has proven

to be robust, effective and competitive on a wide set of unconstrained minimization

problems.

The stabilized barrier method is the same as in Nash and Sorer [14], although

it is tested here on a larger set of problems (and using a different computer). The

modified barrier method software is new, although it was obtained by modifying the
software for the stabilized barrier method. Because much of the software for the two

methods is the same, we believe that this gives a clearer comparison of the properties
of the two methods.

We will compare the performance of the two methods on a set of 1000-variable

problems with bound constraints. Preliminary computational experience with modi-

fied barrier methods, using either a BFGS quasi-Newton method or a conjugate gradi-

ent algorithm as the unconstrained minimization technique, is presented by Breitfeld

and Shanno [3]. Their paper presents numerical results for a set of problems that are

small, but have true nonlinear constraints.

2 The Truncated-Newton Method

In both the modified barrier method and the stabilized barrier method, the uncon-

strained subproblems will be solved using a modifed version of the truncated-Newton

software described in Nash and Nocedal [11]. A summary of this method will be given

here, as applied to an unconstrained problem

minimize f(x).

The notation Vf = _f(x) is used for the gradient of f evaluated at a point x.

Given some initial guess xo, at the j-th iteration the new estimate _ of the solution

is given by

k=x+op.

The search direction p must satisfy p:r_f < 0 (i.e., it is a descent direction for f at

the point z).

The step length a > 0 is chosen to guarantee that ]'(_) < f(z), along with other

conditions designed to guarantee convergence to a local minimizer (see Ortega and

Reinboldt [16]). The particular line search algorithms used are discussed below.

The search direction p is computed as an approximate solution of the Newton

equations

(V2f)p = -Vf (2)

where V2f = V2f(x) is the Hessian matrix of second derivatives at the current point

z. The approximate solution is obtained by applying the conjugate-gradient method

r

i
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to (2). This iterative method is "truncated" before the exact solution is obtained.

On parallel computers, a block conjugate gradient method could be used to solve

(2), resulting in a parallel barrier method (see [13]). This idea has been applied to

bound-constrained problems for the stabilized barrier method in [10].

The conjugate-gradient method corresponds to minimizing the quadratic model

Q(p) = ½pZ'_fp + pZ_yf as a function of p over a sequence of subspaces of increasing

dimension. These are called the Krylov subspaces.

The truncated-Newton software used here includes automatic preconditioning

strategies designed to accelerate convergence of the conjugate-gradient method. These

were not modified in the computational tests used in this paper, because of the spe-

cial form of the bound constraints. For problems with more general constraints, it

is'likely that the preconditioners would have to be adjusted to take into account the

special structure of the barrier subproblems. Techniques for doing this are discussed

by Nash and Sorer in [15].

3 The Stabilized Barrier Method

The discussion here is adapted from [14], and presents a summary of the stabilized

barrier method. For a more complete discussion, the reference should be consulted.

We will assume that a strictly feasible initial guess of the solution has been pro-

vided. For problems with bound constraints, such a point can be easily found. In

addition, we make the following standard assumptions: (a) the feasible set is compact

and has a non-empty interior; (b) a solution z" lies in the closure of the interior of

the feasible region; (c) z" is a regular point of the constraints (i.e., the gradients of

the active constraints at z" are linearly independent) which satisfies the second-order

sufficiency conditions for optimality (see Fiacco and McCormick [5]).

The logarithmic barrier method converts the problem (1) to a sequence of uncon-

strained problems:
m

minimize3(z, _)= f(:c)- p. _"_ ln(c_(z)), (3)
i----I

for a sequence of positive barrier parameters /_ --_ 0. Let z'(/J) denote an uncon-

strained minimizer of _3(x,#). Under quite mild conditions it can be shown that any

limit point z" of the sequence z'(/_) is a solution of (1). Furthermore if we define

A,(#)=#/c,(=.(#)),
then as z'(g) --* z', A(_) _ A', where A" is the vector of Lagrange multipliers

corresponding to z" (see [5]).

The Newton direction for the barrier subproblem (3) at the point z is obtained

by solving

Bp = -b,
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where b and B are the gradier_t arid Hessian matrix respectively, of the logarithmic
barrier function:

b = Vf-_ _,
s=! Ci

_=1 Ci t=l Ct

(To simplify the formulas, f is wrhten for f(z), etc.) [f we define ,\, = _t/c,, then (4)

can be expressed in the form

B -- Vzf - A,Veci +- AfVc, Vc r. (5)
t=l N i=l

The final term in (5) reveals the ill-conditioning in the barrier subproblem. If

a constraint is active at the solution, and its corresponding Lagrange multiplier is

non-zero, then the ratio X,_,/# ---* _ as # --, 0. Thus the Hessian matrix becomes

progressively more ill conditioned as the solution is approached. This ill-conditioning

was noted by Murray in IS].

The stabilized barrier method avoids this ill conditioning by using an approxi-

mation to the Newton direction for the barrier function. This approximation differs

from the Newton direction by terms of O(#) and so becomes more accurate as _ _ 0.

The approximation is obtained by examining the range- and null-space components

of the search direction, defined in terms of a "working set" of constraints, analogous

_o the working set used in an active-set method for constrained optimization (see, for

exampIe. [61). The approach we propose does not require that the Hessian matrix of

the barrier be formed explicitly. A different approach that avoids the ill conditioning

but that requires explicit matrix factorizations is described by Wright in [1S].

To develop the formulas for the search direction, we define 2" to be the index set of

those constraints that contribute to the ill conditioning of the Hessian matrix. This

set is a prediction of the set of constraints that are binding at the solution of (1).

Let N be the matrix whose columns are the gradients of of the constraints in 2" and

assume that N has full rank. We define D = diag(A_, i E Z), and choose Z as a basis

for the null space of N r. Let N # be a pseudo-inverse for N. (For bound-constrained

problems, the columns of N and Z are just columns of the identity matrix.) Finally,
define

H = vV - a,V c,+ - E
c--I _ ig/"

i.e., the "good" part of the Hessian matrix B, omitting the ill-conditioned terms.

Using these definitions the .Newton direction can be approximated via

p _ p_ + PP2,
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where

pl = -z(zrHz) -1Zrb,

7\ = N*(Hm +b),

p2 = -( N*)rD-'
( 6 'J

These formulas correspond to an O(#) approximation to the Newton direction. (A

related stabilized formula for the search direction was derived by Murray in [8].)

The formulas (6) only require (ZTHZ) -t. In our algorithm this is implemented

by applying the conjugate-gradient method to

Z( ZrH Z) -' Zrpl = -b,

with the iteration truncated as in the unconstrained case. The costs of finding the

search direction in this approach are comparable to those of a naive barrier method

that does not deal with the ill conditioning. The approximate direction obtained us-

ing the formulas (6), together with a truncated conjugated-gradient iteration, can be

shown to be a descent direction for the barrier function under appropriate assump-
tions.

A number of computational enhancements were used to.improve the performance

of the stabilized barrier method. These are discussed briefly in Section 5.'

4 The Modified Barrier Met hod

\Ve now describe the modified barrier method for the constrained problem (1). An

extensive discussion of the theory of modified barrier methods can be found in the

paper by Polyak [17].

At each major iteration of the modified barrier method the unconstrained problem

minimize,_ (z, A, #) ( 7 ':,

is solved where

and the solution ._ is used to update { hi },'=l via

= i). (s/

The parameters { ,_i } are estimates of the Lagrange multipliers at the solution z'.

The function g, is a monotone, strictly concave, and twice continuously differentiable

function defined on the interval (0, +0¢); one possible choice is V(') = In(.), although
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This represents an expansion of the feasible region. Hence the implied "feasible

region" for the modified barrier subproblem varies with the barrier parameter #.

Unlike the classical logarithmic barrier function, the modified barrier function and

its derivatives exist at a solution x" for any positive barrier parameter _. In particular,

if %" is the vector of Lagrange multipliers corresponding to x', and if _(.) = ln(.),

then the modified barrier function has the following properties for any # > 0:

Pl.

P2.

P3.

A/t(x', A',_t) = f(x')
r/l

v  ta(x', = - = 0
i=1

" A"V,=,_(x , ,#) = V2f(x ") _ A;V2ci(z °1 +_u-' _ A;Vci(x')Vc,(x') r
i=i i.,_.l

When the problem is a a convex program, it follows from P2 that

P4. z" = arg rain { .Ad(x, A',/_) } for any/J > O.

This means that if the optimal Lagrange multipliers A" are known, one can solve the

constrained problem (1) using a single unconstrained optimization problem regardless

of the value of the barrier parameter. Moreover, if the constrained optimization

problem is nonconvex but the second-order sufficiency and strict complementarity

conditions are satisfied at x" then there exists a/2 and a _ > 0 such that:

(8)
. o

at the solution x*.

Lously differentiable

• ) = In(.), although

P5. rain eigV_rM (x', A°, kt) > _ for/_ </_.

Thus it is again possible to solve (1) using a single unconstrained optimization problem

of the form (7) provided that the barrier parameter is sufficiently small. Of course,

in practice only a local minimizer may be found.
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Polyak [17] has shown that if the initial Lagrange multipliers are positive, and the

barrier parameters are below some threshhold value 2, then the method converges.

Furthermore, for sufficiently small g, the successive iterates satisfy

The constant c > 0 is independent of # _< 2.

For a convex programming problem it is possible to prove a further result. Under

mild conditions on the primal and dual feasible regions the modified barrier method

converges for any fized positive value of the barrier parameter/_, provided that the

initial vector of Lagrange multipliers is positive (see Jansen and Polyak [7]). This

is indeed a strong result. Unlike the classical barrier method, where convergence is

obtained by driving the barrier parameter to zero, in the modified barrier method

convergence will occur regardless of the value of the barrier parameter

The result (9) shows that the modified barrier method converges at a superlinear

rate if the barrier parameter is changed from subproblem to subproblem in such a way

that # --* 0. However it is not necessary that # --, 0 in order to achieve convergence; it

is only necessary that _ be reduced below the threshhold value/_. Thus the condition

number of the Hessian matrix of the modified barrier function can remain bounded

as tile solution is approached, unlike in the classical case.

On practical problems, it is not possible to know a pribri whether tl_/_ initial pa-

rameter chosen is indeed below the threshhold _, and therefore a general-purpose

code for solving (1) must also include some mechanism for reducing the barrier pa-

rameter. However some caution is required. If a solution k(_) to a modified barrier

subproblem has been found, and _ is reduced to a new value _ it is possible that k(/a)

will be "infeasible" for the new subproblem:

Suppose that the function _ is chosen as v)(') = ln(.). Then if Ii < U and c,(k) < 0 it

is possible that

might be undefined. This limits the flexibility of the modified barrier method (it

limits how quickly _ can be reduced) and it can greatly complicate software for this

algorithm, particularly if the constraints are nonlinear (see also [3t).
For this reason we have chosen to use a more elaborate definition of the function

t/,, a definition that varies with the value of /_. In our implementation we use a

modification that has been suggested by Ben-Tal, Tsibulevskii and Yusefovich [2].

Let t = ci(z). If t _> -U/2 then we define

_0(,-_t + 1) = ln(kC't + 1).

If t < -a/2 then we define
_(_,-'t + 1) = q(t)
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,,'here q(t)is a quadratic function for which q(-#/2), q'(-/_/2), and q"(-/_/2) match

the corresponding values for the logarithm function at the point t = -_/2. Since

the quadratic function does not have a singularity at -# (or at any other point), the

barrier parameter can he reduced at any desired rate without worrying whether the

modified barrier function will become undefined or singular.

Our software for the modified barrier algorithm was obtained by adapting the

software for the stabilized barrier method. The underlying unconstrained optimiza-

tion method is the same truncated-Newton method. More specific details (chosen as
a result of considerable numerical testing) are discussed in Section 5.

5 Implementation

.\ number of computational enhancements were used to improve the performance of

the stabilized barrier method. We give a brief description of these enhancements and

discuss their effect when implemented within a modified barrier method.

5.1 The Line Search

Because the logarithmic barrier function has a singularity at the boundary of the

feasible region, standard line search algorithms based on low-order polynomial in-

terpolation may not be effective. For example, in implementing an inverse cubic

interpolation line search we found that an unusually large proportion (often more

than 50%) of the overall computational effort was spent within the line search. Re-

placing this line search by an Armijo-type strategy reduced the fraction of time spent

in the line search but increased the overall computational effort substantially.

For this reason we implemented a special line search devised by Murray and Wright

[9] specifically for the logarithmic barrier function. This line search approximates the

barrier function along the search direction with a one-dimensional function consisting
of a quadratic term plus a logarithmic singularity. We have found this line search to

be effective when implemented within a classical barrier method. For example, on a

set of problems tested in [14], the special line search led to a 27% reduction in the
overall computational effort.

The special line search was not as beneficial when implemented within a modified

barrier method. This may be due to the fact that our elaborate definition of g_ no

longer has a logarithmic singularity. The line search currently implemented in our

software is a standard line search for unconstrained minimization based on inverse

cubic interpolation with an acceptance test based on a Wolfe condition (the "default"

line search for the truncated-Newton method).

1
2 !
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5.2 Extrapolation

A (classical) barrier method can be improved significantly by extrapolation. This

technique uses the solutions of the subproblems for previous barrier parameters to

fit a low-order polynomial to the barrier trajectory. The polynomial is then used to

predict the solution of the subproblem for the new barrier parameter. This provides

a better initial guess for the new problem.

Our own experience indicates that substantial gains may be obtained by using

quadratic extrapolation, and that modest additional gains may be obtained by using

cubic extrapolation instead. The stabilized barrier software uses cubic extrapolation.

Our attempts to accelerate the modified barrier using either linear, quadratic

or cubic extrapolation were not successful. The reason is that the solutions to the

modified barrier subproblems do not lie on a simple trajectory parameterized by #, as

is true for the classical barrier function. Thus in the current code, no extrapolation is

used to obtain the initial guess for a new subproblem, and the solution to the previous

subproblem is used as an initial guess without modification.

5.3 Initializing the Barrier Parameter

The selection of the initial barrier parameter can have a dramatic effect on the running

time of the algorithm. A parameter that is too small may cause the subproblem to

be ill-conditioned and therefore difficult to solve. A parameter that is too large may

require the solution of too many subsequent subproblems.

The best initialization scheme that we found for the stabilized barrier method is

a heuristic that attempts to find the barrier parameter corresponding to the point

on the barrier trajectory which is "closest" to the initial point. The same scheme

does not appear to be effective for the modified barrier method: the resulting initial

parameter tends to be _t_m large." Better results were obtained by setting the initial

barrier parameter to a relatively small value.

5.4 Preconditioning

To be effective, a truncated-Newton method must use preconditioning. The software

for the truncated-Newton method uses a preconditioner based on a limited-memory

quasi-Newton formula obtained from consecutive truncated-Newton iterations, which

in turn is scaled by a diagonal approximation to the Hessian matrix obtained from the

conjugate gradient iterations. The stabilized barrier software uses the final precon-

ditioner from one subproblem as the initial preconditioner for the next subproblem.

The modified barrier method uses the same strategy.



A .Vumerical Comparison of Barrier and Modified Barrier Methods 329

_polation. This

r parameters to
is then used to

:. This provides

rained by using

,tained by using

c extrapolation.

near, quadratic
solutions to the

eterized by _, as

extrapolation is

to the previous

t on the running
-" subproblem to

is too [axge may

arrier method is

ng to the point
ae same scheme

resulting initial

_tting the initial

g. The software

limited-memory

terations, which

)tained from the

he final precon-

ext subproblem.

5.5 Customized Matrix-Vector Product

['he stabilized barrier method uses a customized matrix-vector product for the conju-

gate-gradient iteration that isolates the terms associated with the working set 2". This

is necessary so that rounding errors from the ill-conditioned terms do not contaminate

the well-conditioned terms in the Hessian matrix, and hence destroy the effects of the

stabilized approximation to the Newton direction.

If B denotes the Hessian matrix of the barrier function then the product Bu is

computed via the formula

(V2c,)u " (VcS,)VcTBu = (vV)u - u + u =
i=1 ¢-4 i=l Ci

The terms (V2f)u and (V2ci)u are computed via finite differencing:

V f(z + hu) - V f(z)
(Vaf)u

h

where h is (approximately) the square root of the machine precision. It is not safe to

apply finite differencing directly to Bu because of the singularity of the logarithmic

function. The final summation in the formula for Bu is computed straightforwardly
from the formulas above. When the stabilized formulas for the search direction are

used, the product Hu must be computed. This is done in the same way, except that
the ill-conditioned terms are omitted from the final summation.

The modified barrier uses a similar approach, except applied to the Hessian of the

modified barrier function.

6 Computational Tests

In this section we compare the modified barrier method and the stabilized barrier

method on a set of test problems w{th bound constraints.

Many of our test problems are derived from a set of unconstrained optimization

problems; see Table 1. For more detailed information about problems 1-52, see [11].

Problems 54 and 55 axe from [4}. The final two problems axe from release 2 of the

Minpack-2 collection [1]. They are DPJBFG (pressure in a journal bearing) and

DEPTFG (elastic-plastic torsion). These are the only two minimization problems in

this collection which have bound constraints that are binding at the solution. For

problem DPJBFG we set nz = ny = v/'n, ecc = 0.1, and b = 10. For problem

DEPTFG we set nz =- ny = v'_, and c = 5.

The constrained problems 1-55 are as in [14]. In each case, we first solve the

corresponding unconstrained problem, computing __satisfying

tlg( )ll= < 10-s(1 + If( )t)
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Problem Name n

i

2

3

6

8

9

10

12

28

30

31

38

39

40

41

42

43

45

48

49

50

51

52

54

55

102

105

Calculus of variations 1

Calculus of variations 2

Calculus of variations 3

Generalized Rosenbrock

Penalty l

Penalty 2

Penalty 3

Quadratic

Extended Powel[ singular

Trigonometric
Brown almost-linear

Tridiagonal 1
Linear minimal surface

Boundary-value problem

Broyden tridiagonal nonlinear
Extended ENGVL1

Ext. Freudenstein and Roth

Wrong extended Wood
Extended Rosenbrock

Extended Powel]

Tridiagonal 2

Trigonometric

Penalty 1 (2nd version)
Toint 61

Toint 62

Minpack-2 (DJOURB)

Minpack-2 (DTOR)

lO0, 1000

100, 1000

100, 1000

100, 1000

1000

I00

1000

1000

[000

100

100

1000

961

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

100, 1024

100. 1024

Table 1: List of test problems.
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,>ing the standard initial point _.
i-. If i is odd then

:if z is a multiple of 4 then

Lower and upper bounds are then derived from

-100 < zi <_ 100;

(k), + 0.t < z, _< (i-), + lO.O;

if i is even but not a multiple of 4 then

(_), - 10.0 < z_ _< (i.), -0.1.

I'hen a strictly feasibly initial point for the barrier method is generated. If (Zo), < _,

_hen (x0), = gi +0.5; if(zo), > ui then (Xo)i = ui-0.5, lf(zo)i = fi then (xo)i =

*. + I0-4; if (z0), = u, then (zo)i = ui - 10 -4 . Then xo is used as the initial point for
_he barrier method.

The algorithms were programmed in Fortran 77 and the runs were made using

double precision on an IBM 320H RISC workstation. The "stabilized" algorithm

_scs the stabilized formula for the Newton direction when /_ is small; the "modi-

'icd" algorithm uses the modified barrier method. The two methods incorporate the
,mhancements described in Section 5.

Both methods compute a search direction using a conjugate-gradient iteration

terminated as in [121, using a rule based on the value of the quadratic model with

tolerance 0.5. Both barrier methods were terminated when the norm of the comple-

mentary slackness vector (scaled by 1 + If(z)l) was less than ex = 10 -s, and when the

E_orm of the Lagrangian gradient (also scaled by 1 + ]f(z)]) was less than e2 = 10 -5.

In addition, we required that the solution from the modified barrier method not be

infeasible with respect to any constraint by more than q = 10 -8.

We list here some details of the implementation for the stabilized barrier method.

[:or further information, see Nash and Sorer [14].

• The line search was terminated using an Armijo-type test with parameter

77=0.2.

• The barrier parameter was updated using/_k+, = pk/10.

• The truncated-Newton method (for a given/_) was terminated when the norm

of the gradient (scaled as above) was less than e3 = 10°3, and when the smallest

Lagrange multiplier estimate was greater than -e4, where e4 = 10 -6.

• The stabilized formula for the Newton direction was invoked when the norm

of the scaled complementary slackness vector was less than es = 10 -4.

We made many test runs using the modified barrier method, and some of the more

interesting ones are described below. However, we will only be providing detailed

results for the best of these runs, for which the following parameter settings were
used:

• The line search was terminated using a Wolfe-type test with parameter ,7 =

0.25.

"4

{
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• the initial barrier parameter was the same for all test problems, /no = 10-3;
the barrier parameter was updated using/_+t =/_/2;

• the initial Lagrange multiplier estimates were chosen to be ,\i = 1, i = 1,..., rn;

• for the first subproblem, the truncated-Newton method was terminated when

the norm of the scaled gradient was less than e3 = i0-3;

• for subsequent subproblems, the truncated-Newton method was terminated

when the norm of the scaled gradient was less than e3 = 10-s;

For a particular algorithm, a_single set of parameter settings was used to solve all

of the test problems. The algorithms were not "tuned" to particular problems.

The detailed results are given in Table 2. The table records the costs of running

the barrier method, but not the costs associated with determining the initial point

and the bounds (that is, the costs of solving the initial unconstrained problem aze

ignored). An entry in the table consists of four numbers: "it" (the total number of

outer iterations), _'ls" (the number of gradient evaluations used in the line search),

"cg" (tlxe fiumber of gradient evaluations used in the inner iteration to compute the

Hessian-vector products), and "total" (the sum of "is" and "cg").

The results in Table 2 indicate that the modified barrier method performs notably

better than the stabilized barrier method on these problems. The modified barrier

method requires only 74% as many truncated-Newton iterations, and only 68%

many gradient evaluations. In examining individual problems it is seen that the

stabilized barrier method only beats the modified barrier method on 9 of the 33

problems: problems 1 (n = 100,1000), 12, 42, 49, 54, 102 (n = 100,1024), 105

(n = 100). We should emphasize that these individual results are a by-product of

our desire to use a single set of parameter settings for all test problems. By seeking

parameter settings that minimize the grand total for the entire test set, the behavior of

the method on individual problems can deteriorate. In particular, by fine-tuning the

parameters for these problems it is possible to obtain much better performance from

the modified barrier method (at the cost of poorer performance on other problems).

For the other computational tests of the modified barrier method we will only list

the totals for the four table entries. Note that for the best version of the method that

we were able to find, the totals were

(1592 3361 7613 10974)

We experimented with solving the first subproblem both more and less accurately,

but this was less effective. When the initial subproblem was terminated when the

norm of the scaled gradient was less than e3 = 10 -2 (instead of e3 = 10 -a) then the

totals were:

(L748 3463 8705 12168)

Similar results were obtained when the first subproblem was terminated after a fixed

number (6) truncated-Newton iterations. When the first subproblem was solved to
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_ .Vumerical Comparison of/3artier and Modified Barrier Methods

Problem n Modified Stabifized

it Is cg total it Is cg total
1 1000

1 100

2 1000

2 100

3 1000
3 100

6 I000

6 100
!8 1000

9 100

I0 1000

12 1000

28 lO00

30 100

31 100

38 1000

a9 961

40 1000

41 1000
42 1000

43 1000

45 1000

48 1000

49 1000

50 1000

51 1000

52 1000
54 I000

55 1000

102 1024

102 100

105 1024

105 100

78 258 432 690

46 187 195 382

70 103 361 464

33 46 86 132

77 144 448 592

50 103 201 304
48 88 166 254

32 56 88 144

16 36 42 78

42 86 165 251

45 68 174 242
69 146 434 580

19 25 57 82

32 52 90 142

38 128 112 240

60 128 324 452

56 128 572 700
32 88 141 229

39 82 164 246

42 I01 179 280

38 57 147 204

42 65 142 207

29 86 89 175

19 25 57 82

63 139 339 478

57 122 190 312

54 148 283 431i
56 138 248 386

: 59 120 232 352

[ 91 151 685 836

47 82 176 258

69 106 437 54344 69 157 226

Totals 1592 3361 7613 10974

49 83 212 295

39 75 153 228

82 140 789 929

44 68 144 212

97 167 834 1001

59 88 279 367

i14 192 1321 1513

66 if7 305 422

23 49 49 98

114 284 301 585

87 212 316 528
57 116 448 564

16 36 46 82
36 57 86 143

53 119 152 271

76 135 501 636

98 243 1134 1377

35 65 175 240

50 92 240 332
37 83 95 I78

55 Ill 292 403

55 128 153 281

60 157 149 306

16 36 46 80

72 129 599 728

49 79 283 362

69 113 579 692

68 108 247 355
255 413 801 1214

82 134 573 707

40 74 148 222

64 115 508 623

37 71 120 191

2154 4089 12078 16165

Table '2: Results using (a) modified barrier method, (b) stabilized barrier

method plus enhancements2

'zCotumn "it" records the number of outer iterations, "Is" records the

number of gradient evaluations used in the line search, "cg" records the
number of gradient evaluations used in the inner iteration, and "total"
records the total number of gradient evaluations ("Is" plus "cg').

333
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"full" accuracy ((3 = 10-6), then the results were worse:

(t608 3480 8519 11999)

The overall convergence of the modified barrier method seems to be driven by I

accuracy of the multipliers. Ely solving the first subproblem less accurately we ho

to get better initial Lagrange multiplier estimates at relatively low expense. If t

first subproblem is solved too crudely, however, it is possible to obtain poor estimat

of the Lagrange multipliers. Solving the first subproblem to full accuracy can also I

wasteful, though, because it does not make sense to accurately solve a subprob[e.

with arbitrary Lagrange multipliers (A, = 1).

We experimented with "more sophisticated" choices of the initial Lagrange mult

plier estimates, trying to use gradient and residual information at the initial point z

to compute first-order multiplier estimates. The results were poor (with grand total

near 20,000).

In another set of experiments we varied the choice of the initial barrier paramete_

/_o from the value used above (Po = 10-3), but with the other parameter setting,

unchanged. The following totals were obtained with #0 = 10-t:

with #o = I0 -_"

with #o = 10-4

(2367 3928 10005 13933)

(1875 3364 8650 12014)

(2002 6836 12151 18987)

We also attempted to define p0 adaptively based on gradient information at Zo, as

was done for the harrier function. This attempt failed, with grand totals near 20,000.

Tests were also performed where the subproblems were solved less accurately (us-

ing e3 > 10-6)- These were not successful. The modified barrier method seems to

require accurate Lagrange multiplier estimates, and these cannot be obtained without

solving the subproblems accurately.

Finally we experimented with different rates of reducing the barrier parameter. A

surprisingly successful strategy on a large number of the test problems was to leave

the barrier parameter fixed at /_ = 10 -3 for all subproblems. However, this strategy

behaved poorly on a few subproblems, making it noncompetitive overall. Reducing

the barrier method more rapidly did not work well, in contrast to our experience

with the stabilized barrier method. We think that it might be possible to reduce

the barrier parameter more quickly if some form of extrapolation procedure could be
found for the modified barrier method.

The strategies for running the two methods effectively are different. In the sta-

bilized barrier methad a larger number of subproblems are used, each one solved

coarsely, and the barrier parameter is reduced quickly. Extrapolation techniques and

other enhancements are then used to safeguard and accelerate the method. For the



ak, andA..Sorer A Numerical Comparison of Barrier and Modilied Barrier Methods 335

:>e driven by the

:urate]y we hope

expense. If the

n poor estimates

_racy can also be

vea subproblem

Lagrange multi-

e initial point x0

vith grand totals

.arrier parameter

rameter settings

marion at Zo, as

tals near 20,000.

s accurately (us-
nethod seems to

_btained without

:r parameter. A

ms was to leave

er, this strategy

erall. Reducing

our experience
ssible to reduce

)cedure could be

•ent. In the sta-

each 9tie solved

i techni_tues and
nethod. For the

1.46 x l0 s

1.46 x 10 4

1.46 x 10a

1.46 x 102

1.46 x 101

1.46 × 10o

1.46 x 10 -_

1.46 x I0 -2

1.46 x 10-3.

1.46 x 10-4.

Table

Individual

it ls cg
l 2 2

5 9 29

6 7 69

5 7 30

9 16 46

11 18 62

7 12 28

3 4 13

1 2 2

1 2 2

Cumulative

it Is cg total
t 2 2 4

6 I1 31 42

12 18 100 118

17 25 130 155

26 41 176 217

37 59 238 297

44 71 266 337

47 75 279 354

48 77 281 358

49 79 283 362

Gap

6.8 x 10 -J

1.1 x 10 -2

5.4 x 10 -3

2.6 x 10 -a

6.4 x 10 -4

8.5 x i0 -s

8.8 x 10 -6

8.8 x 10 -z

8.8 x 10 -s

8.8 x i0-9

V£

5.5 x i0 -6

6.7 × 10 -a

1.4 x 10 -3

2.9 × 10 -4

3.5 x 10 -6

1.2 x 10 -s

1.1 x 10 -s

1.0 x 10 -s

2.8 x i0-9

1.8 × I0-l°

3: Using the stabilized barrier method to solve problem 51 with
n = 1000. _

SAn • indicates subproblems where the 1-inverse formula for the search
direction was used. Column "it" records the number of outer iterations,
"Is" records the number of gradient evaluations used in the line search,
"cg" records the number of gradient evaluations used in the inner iteration,
and "total" records the total number of gradient evaluations ("ls" plus
"cg"). The column "Gap" records the (scaled) duality gap, and the column
"tl_7/'I[ '' records the norm of the (scaled) Lagrangian function.

modified barrier method, fewer subproblems are used, each one is solved accurately,

tile barrier parameter is reduced slowly (and frequently need not be reduced at all).

In Tables 3 and 4 these points are illustrated, with the two methods being applied to

problem 51 wii, h n = 1000.

For completeness we also illustrate the performance of a "naive" barrier method

on the same problem. The "naive" barrier method is simply a barrier method without

the special enhancements. It uses a line search based on inverse cubic interpolation,

it does not use extrapolation, special initialization of/_, or the 1-inverse formula, and

it does not save the preconditioners from one subproblem to the next. The results
['or this method are shown in Table 5.

7 Conclusions

_Ve have compared the performance of a stabilized barrier method with the perfor-

mance of a modified barrier method. Our past experience indicates that the stabilized

barrier method is a robust and effective method for solving bound-constrained prob-

J

t
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l.O0 × 10-3

5.00 × 10-4

.°.50 × 10-4

1.25 × 10-4

6.25 × I0 -s

Individual

it Is cg
13 23 55

17 25 56

15 45 45
7 8 20

5 21 14

Cumulative

Is cg
_3 23 55

30 48 111

45 93 156

52 101 176

57 122 190

Gap

tot

78 i.l× 10-2

159 1.6x I0-4

249 I.ix 10-s

277 3.7 × 10 -9

312 7.4 × 10 -11

V£

2.1 x 10 -3

5.5 x 10 -r

1.5 x 10 -6
3.5 × I0 -r

7.7 × 10 -r

Infeff-"

5.7 x l0--a"
1.2 x l0 -3

7.9 x 10 -6

2.7 x l0 -s

7.6x 10 -1(

Table 4: Using the modified barrier method to solve problem 51 with

n = 1000. _

aColumn "it" records the number of outer iterations. "Is" records the
number of gradient evaluations used in the line search, "cg" records the
number of gradient evaluations used in the inner iteration, and "tot" records
the total number of gradient evaluations ("Is" plus "cg"). The column
"'Gap" records the (scaled) duality gap, the column "ll_:z:l/" records the
norm of the (scaled) Lagrangian function, and the column "Infeas" records
the infinity norm of the infeazibilities with respect to the bound constraints.

#

1.00 x I0_

1.00 x I0l

1.00 × i0°

1.00 x i0-'

1.00 x t0-_

1.00 x 10 -a

1.00 x 10-4

Individual

it ls cg

15 55 59

19 106 65

22 72 98

20 122 107

19 69 104

19 102 i18

19 59 97

Cumulative

it Is cg total

15 55 59 I14

34 161 124 285

56 233 222 455

76 355 329 684

95 424 433 857

I14 526 551 i077

133 585 648 1233

Gap

2.0 x i0 -3

4.7 x 10 -4

5.8 x 10 -s

6.0 x 10 -_

6.0 x t0 -r

6.0 x 10 -s

6.0 × 10 -9

vz:

3.8 x 10-6

3.6 x I0-r

8.7 x 10-9

5.1 x I0-s

4.3 x I0-s

8.1 x I0 -s

2.7 x 10 -8

Table 5: Using a naive barrier method to solve problem 51 with
n = 1000."

aColumn "it" records the number of outer iterations, "Is"
records the number of gradient evaluations used in the line search,
"cg" records the number of gradient evaluations used in the inner
iteration, and "total" records the total number of gradient evalua-
tions ("Is" plus "cg"). The column "Gap" records the (scaled) du-
ality gap, and the column "llV£11" records the norm of the (scaled)
Lagrangian function.
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I Infeas

7.9 x 10 -6

2.7 × 10 -s

7.6 x I0 -l°

m 51 with

• records the
' records the
"tot" records
The column

' records the
fens" records
,t constraints.

3 3.8 X I0 -6

3.6 x 10-:

8.7 X 10 -9

" I 5.1 x I0 -s

r I 4.3 x 10 -8

/ 8.1 x 10 -s' 2.7 x l0 -s

51 with

rlS. "IS"

search_

the inner

xt evalua-

aled) du-
e (scaled )

o .

Lems. Our software for the stabilized barrier method is a result of much testing

and enhancement, and represents a considerable improvement over "naive" barrier

techniques. In contrast, our software for the modified barrier method is less sophis-

ticated. Nevertheless, its performance is superior to the stabilized barrier method

on the bound-constrained problems that we have tested. We expect that we may

obtain even better performance with further testing and enhancement. This sug-

gests that modified barrier methods are a promising tool for solving large nonlinear

programming problems.
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